| Index: webrtc/modules/audio_processing/agc/agc_audio_proc.cc
|
| diff --git a/webrtc/modules/audio_processing/agc/agc_audio_proc.cc b/webrtc/modules/audio_processing/agc/agc_audio_proc.cc
|
| deleted file mode 100644
|
| index dc4a5a711c7ef168e7e534190e03c6384dbd0cd8..0000000000000000000000000000000000000000
|
| --- a/webrtc/modules/audio_processing/agc/agc_audio_proc.cc
|
| +++ /dev/null
|
| @@ -1,269 +0,0 @@
|
| -/*
|
| - * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license
|
| - * that can be found in the LICENSE file in the root of the source
|
| - * tree. An additional intellectual property rights grant can be found
|
| - * in the file PATENTS. All contributing project authors may
|
| - * be found in the AUTHORS file in the root of the source tree.
|
| - */
|
| -
|
| -#include "webrtc/modules/audio_processing/agc/agc_audio_proc.h"
|
| -
|
| -#include <math.h>
|
| -#include <stdio.h>
|
| -
|
| -#include "webrtc/common_audio/fft4g.h"
|
| -#include "webrtc/modules/audio_processing/agc/agc_audio_proc_internal.h"
|
| -#include "webrtc/modules/audio_processing/agc/pitch_internal.h"
|
| -#include "webrtc/modules/audio_processing/agc/pole_zero_filter.h"
|
| -extern "C" {
|
| -#include "webrtc/modules/audio_coding/codecs/isac/main/source/codec.h"
|
| -#include "webrtc/modules/audio_coding/codecs/isac/main/source/lpc_analysis.h"
|
| -#include "webrtc/modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"
|
| -#include "webrtc/modules/audio_coding/codecs/isac/main/source/structs.h"
|
| -}
|
| -#include "webrtc/modules/interface/module_common_types.h"
|
| -
|
| -namespace webrtc {
|
| -
|
| -// The following structures are declared anonymous in iSAC's structs.h. To
|
| -// forward declare them, we use this derived class trick.
|
| -struct AgcAudioProc::PitchAnalysisStruct : public ::PitchAnalysisStruct {};
|
| -struct AgcAudioProc::PreFiltBankstr : public ::PreFiltBankstr {};
|
| -
|
| -static const float kFrequencyResolution = kSampleRateHz /
|
| - static_cast<float>(AgcAudioProc::kDftSize);
|
| -static const int kSilenceRms = 5;
|
| -
|
| -// TODO(turajs): Make a Create or Init for AgcAudioProc.
|
| -AgcAudioProc::AgcAudioProc()
|
| - : audio_buffer_(),
|
| - num_buffer_samples_(kNumPastSignalSamples),
|
| - log_old_gain_(-2),
|
| - old_lag_(50), // Arbitrary but valid as pitch-lag (in samples).
|
| - pitch_analysis_handle_(new PitchAnalysisStruct),
|
| - pre_filter_handle_(new PreFiltBankstr),
|
| - high_pass_filter_(PoleZeroFilter::Create(
|
| - kCoeffNumerator, kFilterOrder, kCoeffDenominator, kFilterOrder)) {
|
| - static_assert(kNumPastSignalSamples + kNumSubframeSamples ==
|
| - sizeof(kLpcAnalWin) / sizeof(kLpcAnalWin[0]),
|
| - "lpc analysis window incorrect size");
|
| - static_assert(kLpcOrder + 1 == sizeof(kCorrWeight) / sizeof(kCorrWeight[0]),
|
| - "correlation weight incorrect size");
|
| -
|
| - // TODO(turajs): Are we doing too much in the constructor?
|
| - float data[kDftSize];
|
| - // Make FFT to initialize.
|
| - ip_[0] = 0;
|
| - WebRtc_rdft(kDftSize, 1, data, ip_, w_fft_);
|
| - // TODO(turajs): Need to initialize high-pass filter.
|
| -
|
| - // Initialize iSAC components.
|
| - WebRtcIsac_InitPreFilterbank(pre_filter_handle_.get());
|
| - WebRtcIsac_InitPitchAnalysis(pitch_analysis_handle_.get());
|
| -}
|
| -
|
| -AgcAudioProc::~AgcAudioProc() {}
|
| -
|
| -void AgcAudioProc::ResetBuffer() {
|
| - memcpy(audio_buffer_, &audio_buffer_[kNumSamplesToProcess],
|
| - sizeof(audio_buffer_[0]) * kNumPastSignalSamples);
|
| - num_buffer_samples_ = kNumPastSignalSamples;
|
| -}
|
| -
|
| -int AgcAudioProc::ExtractFeatures(const int16_t* frame,
|
| - int length,
|
| - AudioFeatures* features) {
|
| - features->num_frames = 0;
|
| - if (length != kNumSubframeSamples) {
|
| - return -1;
|
| - }
|
| -
|
| - // High-pass filter to remove the DC component and very low frequency content.
|
| - // We have experienced that this high-pass filtering improves voice/non-voiced
|
| - // classification.
|
| - if (high_pass_filter_->Filter(frame, kNumSubframeSamples,
|
| - &audio_buffer_[num_buffer_samples_]) != 0) {
|
| - return -1;
|
| - }
|
| -
|
| - num_buffer_samples_ += kNumSubframeSamples;
|
| - if (num_buffer_samples_ < kBufferLength) {
|
| - return 0;
|
| - }
|
| - assert(num_buffer_samples_ == kBufferLength);
|
| - features->num_frames = kNum10msSubframes;
|
| - features->silence = false;
|
| -
|
| - Rms(features->rms, kMaxNumFrames);
|
| - for (int i = 0; i < kNum10msSubframes; ++i) {
|
| - if (features->rms[i] < kSilenceRms) {
|
| - // PitchAnalysis can cause NaNs in the pitch gain if it's fed silence.
|
| - // Bail out here instead.
|
| - features->silence = true;
|
| - ResetBuffer();
|
| - return 0;
|
| - }
|
| - }
|
| -
|
| - PitchAnalysis(features->log_pitch_gain, features->pitch_lag_hz,
|
| - kMaxNumFrames);
|
| - FindFirstSpectralPeaks(features->spectral_peak, kMaxNumFrames);
|
| - ResetBuffer();
|
| - return 0;
|
| -}
|
| -
|
| -// Computes |kLpcOrder + 1| correlation coefficients.
|
| -void AgcAudioProc::SubframeCorrelation(double* corr, int length_corr,
|
| - int subframe_index) {
|
| - assert(length_corr >= kLpcOrder + 1);
|
| - double windowed_audio[kNumSubframeSamples + kNumPastSignalSamples];
|
| - int buffer_index = subframe_index * kNumSubframeSamples;
|
| -
|
| - for (int n = 0; n < kNumSubframeSamples + kNumPastSignalSamples; n++)
|
| - windowed_audio[n] = audio_buffer_[buffer_index++] * kLpcAnalWin[n];
|
| -
|
| - WebRtcIsac_AutoCorr(corr, windowed_audio, kNumSubframeSamples +
|
| - kNumPastSignalSamples, kLpcOrder);
|
| -}
|
| -
|
| -// Compute |kNum10msSubframes| sets of LPC coefficients, one per 10 ms input.
|
| -// The analysis window is 15 ms long and it is centered on the first half of
|
| -// each 10ms sub-frame. This is equivalent to computing LPC coefficients for the
|
| -// first half of each 10 ms subframe.
|
| -void AgcAudioProc::GetLpcPolynomials(double* lpc, int length_lpc) {
|
| - assert(length_lpc >= kNum10msSubframes * (kLpcOrder + 1));
|
| - double corr[kLpcOrder + 1];
|
| - double reflec_coeff[kLpcOrder];
|
| - for (int i = 0, offset_lpc = 0; i < kNum10msSubframes;
|
| - i++, offset_lpc += kLpcOrder + 1) {
|
| - SubframeCorrelation(corr, kLpcOrder + 1, i);
|
| - corr[0] *= 1.0001;
|
| - // This makes Lev-Durb a bit more stable.
|
| - for (int k = 0; k < kLpcOrder + 1; k++) {
|
| - corr[k] *= kCorrWeight[k];
|
| - }
|
| - WebRtcIsac_LevDurb(&lpc[offset_lpc], reflec_coeff, corr, kLpcOrder);
|
| - }
|
| -}
|
| -
|
| -// Fit a second order curve to these 3 points and find the location of the
|
| -// extremum. The points are inverted before curve fitting.
|
| -static float QuadraticInterpolation(float prev_val, float curr_val,
|
| - float next_val) {
|
| - // Doing the interpolation in |1 / A(z)|^2.
|
| - float fractional_index = 0;
|
| - next_val = 1.0f / next_val;
|
| - prev_val = 1.0f / prev_val;
|
| - curr_val = 1.0f / curr_val;
|
| -
|
| - fractional_index = -(next_val - prev_val) * 0.5f / (next_val + prev_val -
|
| - 2.f * curr_val);
|
| - assert(fabs(fractional_index) < 1);
|
| - return fractional_index;
|
| -}
|
| -
|
| -// 1 / A(z), where A(z) is defined by |lpc| is a model of the spectral envelope
|
| -// of the input signal. The local maximum of the spectral envelope corresponds
|
| -// with the local minimum of A(z). It saves complexity, as we save one
|
| -// inversion. Furthermore, we find the first local maximum of magnitude squared,
|
| -// to save on one square root.
|
| -void AgcAudioProc::FindFirstSpectralPeaks(double* f_peak, int length_f_peak) {
|
| - assert(length_f_peak >= kNum10msSubframes);
|
| - double lpc[kNum10msSubframes * (kLpcOrder + 1)];
|
| - // For all sub-frames.
|
| - GetLpcPolynomials(lpc, kNum10msSubframes * (kLpcOrder + 1));
|
| -
|
| - const int kNumDftCoefficients = kDftSize / 2 + 1;
|
| - float data[kDftSize];
|
| -
|
| - for (int i = 0; i < kNum10msSubframes; i++) {
|
| - // Convert to float with zero pad.
|
| - memset(data, 0, sizeof(data));
|
| - for (int n = 0; n < kLpcOrder + 1; n++) {
|
| - data[n] = static_cast<float>(lpc[i * (kLpcOrder + 1) + n]);
|
| - }
|
| - // Transform to frequency domain.
|
| - WebRtc_rdft(kDftSize, 1, data, ip_, w_fft_);
|
| -
|
| - int index_peak = 0;
|
| - float prev_magn_sqr = data[0] * data[0];
|
| - float curr_magn_sqr = data[2] * data[2] + data[3] * data[3];
|
| - float next_magn_sqr;
|
| - bool found_peak = false;
|
| - for (int n = 2; n < kNumDftCoefficients - 1; n++) {
|
| - next_magn_sqr = data[2 * n] * data[2 * n] +
|
| - data[2 * n + 1] * data[2 * n + 1];
|
| - if (curr_magn_sqr < prev_magn_sqr && curr_magn_sqr < next_magn_sqr) {
|
| - found_peak = true;
|
| - index_peak = n - 1;
|
| - break;
|
| - }
|
| - prev_magn_sqr = curr_magn_sqr;
|
| - curr_magn_sqr = next_magn_sqr;
|
| - }
|
| - float fractional_index = 0;
|
| - if (!found_peak) {
|
| - // Checking if |kNumDftCoefficients - 1| is the local minimum.
|
| - next_magn_sqr = data[1] * data[1];
|
| - if (curr_magn_sqr < prev_magn_sqr && curr_magn_sqr < next_magn_sqr) {
|
| - index_peak = kNumDftCoefficients - 1;
|
| - }
|
| - } else {
|
| - // A peak is found, do a simple quadratic interpolation to get a more
|
| - // accurate estimate of the peak location.
|
| - fractional_index = QuadraticInterpolation(prev_magn_sqr, curr_magn_sqr,
|
| - next_magn_sqr);
|
| - }
|
| - f_peak[i] = (index_peak + fractional_index) * kFrequencyResolution;
|
| - }
|
| -}
|
| -
|
| -// Using iSAC functions to estimate pitch gains & lags.
|
| -void AgcAudioProc::PitchAnalysis(double* log_pitch_gains, double* pitch_lags_hz,
|
| - int length) {
|
| - // TODO(turajs): This can be "imported" from iSAC & and the next two
|
| - // constants.
|
| - assert(length >= kNum10msSubframes);
|
| - const int kNumPitchSubframes = 4;
|
| - double gains[kNumPitchSubframes];
|
| - double lags[kNumPitchSubframes];
|
| -
|
| - const int kNumSubbandFrameSamples = 240;
|
| - const int kNumLookaheadSamples = 24;
|
| -
|
| - float lower[kNumSubbandFrameSamples];
|
| - float upper[kNumSubbandFrameSamples];
|
| - double lower_lookahead[kNumSubbandFrameSamples];
|
| - double upper_lookahead[kNumSubbandFrameSamples];
|
| - double lower_lookahead_pre_filter[kNumSubbandFrameSamples +
|
| - kNumLookaheadSamples];
|
| -
|
| - // Split signal to lower and upper bands
|
| - WebRtcIsac_SplitAndFilterFloat(&audio_buffer_[kNumPastSignalSamples],
|
| - lower, upper, lower_lookahead, upper_lookahead,
|
| - pre_filter_handle_.get());
|
| - WebRtcIsac_PitchAnalysis(lower_lookahead, lower_lookahead_pre_filter,
|
| - pitch_analysis_handle_.get(), lags, gains);
|
| -
|
| - // Lags are computed on lower-band signal with sampling rate half of the
|
| - // input signal.
|
| - GetSubframesPitchParameters(kSampleRateHz / 2, gains, lags,
|
| - kNumPitchSubframes, kNum10msSubframes,
|
| - &log_old_gain_, &old_lag_,
|
| - log_pitch_gains, pitch_lags_hz);
|
| -}
|
| -
|
| -void AgcAudioProc::Rms(double* rms, int length_rms) {
|
| - assert(length_rms >= kNum10msSubframes);
|
| - int offset = kNumPastSignalSamples;
|
| - for (int i = 0; i < kNum10msSubframes; i++) {
|
| - rms[i] = 0;
|
| - for (int n = 0; n < kNumSubframeSamples; n++, offset++)
|
| - rms[i] += audio_buffer_[offset] * audio_buffer_[offset];
|
| - rms[i] = sqrt(rms[i] / kNumSubframeSamples);
|
| - }
|
| -}
|
| -
|
| -} // namespace webrtc
|
|
|