| Index: webrtc/modules/audio_processing/agc/pitch_based_vad.cc | 
| diff --git a/webrtc/modules/audio_processing/agc/pitch_based_vad.cc b/webrtc/modules/audio_processing/agc/pitch_based_vad.cc | 
| deleted file mode 100644 | 
| index 0cfa52a0108afb0b255a4c10d519467dda0085c3..0000000000000000000000000000000000000000 | 
| --- a/webrtc/modules/audio_processing/agc/pitch_based_vad.cc | 
| +++ /dev/null | 
| @@ -1,122 +0,0 @@ | 
| -/* | 
| - *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 
| - * | 
| - *  Use of this source code is governed by a BSD-style license | 
| - *  that can be found in the LICENSE file in the root of the source | 
| - *  tree. An additional intellectual property rights grant can be found | 
| - *  in the file PATENTS.  All contributing project authors may | 
| - *  be found in the AUTHORS file in the root of the source tree. | 
| - */ | 
| - | 
| -#include "webrtc/modules/audio_processing/agc/pitch_based_vad.h" | 
| - | 
| -#include <assert.h> | 
| -#include <math.h> | 
| -#include <string.h> | 
| - | 
| -#include "webrtc/modules/audio_processing/agc/circular_buffer.h" | 
| -#include "webrtc/modules/audio_processing/agc/common.h" | 
| -#include "webrtc/modules/audio_processing/agc/noise_gmm_tables.h" | 
| -#include "webrtc/modules/audio_processing/agc/voice_gmm_tables.h" | 
| -#include "webrtc/modules/interface/module_common_types.h" | 
| - | 
| -namespace webrtc { | 
| - | 
| -static_assert(kNoiseGmmDim == kVoiceGmmDim, | 
| -              "noise and voice gmm dimension not equal"); | 
| - | 
| -// These values should match MATLAB counterparts for unit-tests to pass. | 
| -static const int kPosteriorHistorySize = 500;  // 5 sec of 10 ms frames. | 
| -static const double kInitialPriorProbability = 0.3; | 
| -static const int kTransientWidthThreshold = 7; | 
| -static const double kLowProbabilityThreshold = 0.2; | 
| - | 
| -static double LimitProbability(double p) { | 
| -  const double kLimHigh = 0.99; | 
| -  const double kLimLow = 0.01; | 
| - | 
| -  if (p > kLimHigh) | 
| -    p = kLimHigh; | 
| -  else if (p < kLimLow) | 
| -    p = kLimLow; | 
| -  return p; | 
| -} | 
| - | 
| -PitchBasedVad::PitchBasedVad() | 
| -    : p_prior_(kInitialPriorProbability), | 
| -      circular_buffer_(AgcCircularBuffer::Create(kPosteriorHistorySize)) { | 
| -  // Setup noise GMM. | 
| -  noise_gmm_.dimension = kNoiseGmmDim; | 
| -  noise_gmm_.num_mixtures = kNoiseGmmNumMixtures; | 
| -  noise_gmm_.weight = kNoiseGmmWeights; | 
| -  noise_gmm_.mean = &kNoiseGmmMean[0][0]; | 
| -  noise_gmm_.covar_inverse = &kNoiseGmmCovarInverse[0][0][0]; | 
| - | 
| -  // Setup voice GMM. | 
| -  voice_gmm_.dimension = kVoiceGmmDim; | 
| -  voice_gmm_.num_mixtures = kVoiceGmmNumMixtures; | 
| -  voice_gmm_.weight = kVoiceGmmWeights; | 
| -  voice_gmm_.mean = &kVoiceGmmMean[0][0]; | 
| -  voice_gmm_.covar_inverse = &kVoiceGmmCovarInverse[0][0][0]; | 
| -} | 
| - | 
| -PitchBasedVad::~PitchBasedVad() {} | 
| - | 
| -int PitchBasedVad::VoicingProbability(const AudioFeatures& features, | 
| -                                      double* p_combined) { | 
| -  double p; | 
| -  double gmm_features[3]; | 
| -  double pdf_features_given_voice; | 
| -  double pdf_features_given_noise; | 
| -  // These limits are the same in matlab implementation 'VoicingProbGMM().' | 
| -  const double kLimLowLogPitchGain = -2.0; | 
| -  const double kLimHighLogPitchGain = -0.9; | 
| -  const double kLimLowSpectralPeak = 200; | 
| -  const double kLimHighSpectralPeak = 2000; | 
| -  const double kEps = 1e-12; | 
| -  for (int n = 0; n < features.num_frames; n++) { | 
| -    gmm_features[0] = features.log_pitch_gain[n]; | 
| -    gmm_features[1] = features.spectral_peak[n]; | 
| -    gmm_features[2] = features.pitch_lag_hz[n]; | 
| - | 
| -    pdf_features_given_voice = EvaluateGmm(gmm_features, voice_gmm_); | 
| -    pdf_features_given_noise = EvaluateGmm(gmm_features, noise_gmm_); | 
| - | 
| -    if (features.spectral_peak[n] < kLimLowSpectralPeak || | 
| -        features.spectral_peak[n] > kLimHighSpectralPeak || | 
| -        features.log_pitch_gain[n] < kLimLowLogPitchGain) { | 
| -      pdf_features_given_voice = kEps * pdf_features_given_noise; | 
| -    } else if (features.log_pitch_gain[n] > kLimHighLogPitchGain) { | 
| -      pdf_features_given_noise = kEps * pdf_features_given_voice; | 
| -    } | 
| - | 
| -    p = p_prior_ * pdf_features_given_voice / (pdf_features_given_voice * | 
| -        p_prior_ + pdf_features_given_noise * (1 - p_prior_)); | 
| - | 
| -    p = LimitProbability(p); | 
| - | 
| -    // Combine pitch-based probability with standalone probability, before | 
| -    // updating prior probabilities. | 
| -    double prod_active = p * p_combined[n]; | 
| -    double prod_inactive = (1 - p) * (1 - p_combined[n]); | 
| -    p_combined[n] = prod_active / (prod_active + prod_inactive); | 
| - | 
| -    if (UpdatePrior(p_combined[n]) < 0) | 
| -      return -1; | 
| -    // Limit prior probability. With a zero prior probability the posterior | 
| -    // probability is always zero. | 
| -    p_prior_ = LimitProbability(p_prior_); | 
| -  } | 
| -  return 0; | 
| -} | 
| - | 
| -int PitchBasedVad::UpdatePrior(double p) { | 
| -  circular_buffer_->Insert(p); | 
| -  if (circular_buffer_->RemoveTransient(kTransientWidthThreshold, | 
| -                                        kLowProbabilityThreshold) < 0) | 
| -    return -1; | 
| -  p_prior_ = circular_buffer_->Mean(); | 
| -  return 0; | 
| -} | 
| - | 
| -}  // namespace webrtc | 
|  |