OLD | NEW |
1 /* | 1 /* |
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. | 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license | 4 * Use of this source code is governed by a BSD-style license |
5 * that can be found in the LICENSE file in the root of the source | 5 * that can be found in the LICENSE file in the root of the source |
6 * tree. An additional intellectual property rights grant can be found | 6 * tree. An additional intellectual property rights grant can be found |
7 * in the file PATENTS. All contributing project authors may | 7 * in the file PATENTS. All contributing project authors may |
8 * be found in the AUTHORS file in the root of the source tree. | 8 * be found in the AUTHORS file in the root of the source tree. |
9 */ | 9 */ |
10 | 10 |
11 #include "webrtc/modules/audio_processing/agc/pitch_based_vad.h" | 11 #include "webrtc/modules/audio_processing/vad/pitch_based_vad.h" |
12 | 12 |
13 #include <assert.h> | 13 #include <assert.h> |
14 #include <math.h> | 14 #include <math.h> |
15 #include <string.h> | 15 #include <string.h> |
16 | 16 |
17 #include "webrtc/modules/audio_processing/agc/circular_buffer.h" | 17 #include "webrtc/modules/audio_processing/vad/vad_circular_buffer.h" |
18 #include "webrtc/modules/audio_processing/agc/common.h" | 18 #include "webrtc/modules/audio_processing/vad/common.h" |
19 #include "webrtc/modules/audio_processing/agc/noise_gmm_tables.h" | 19 #include "webrtc/modules/audio_processing/vad/noise_gmm_tables.h" |
20 #include "webrtc/modules/audio_processing/agc/voice_gmm_tables.h" | 20 #include "webrtc/modules/audio_processing/vad/voice_gmm_tables.h" |
21 #include "webrtc/modules/interface/module_common_types.h" | 21 #include "webrtc/modules/interface/module_common_types.h" |
22 | 22 |
23 namespace webrtc { | 23 namespace webrtc { |
24 | 24 |
25 static_assert(kNoiseGmmDim == kVoiceGmmDim, | 25 static_assert(kNoiseGmmDim == kVoiceGmmDim, |
26 "noise and voice gmm dimension not equal"); | 26 "noise and voice gmm dimension not equal"); |
27 | 27 |
28 // These values should match MATLAB counterparts for unit-tests to pass. | 28 // These values should match MATLAB counterparts for unit-tests to pass. |
29 static const int kPosteriorHistorySize = 500; // 5 sec of 10 ms frames. | 29 static const int kPosteriorHistorySize = 500; // 5 sec of 10 ms frames. |
30 static const double kInitialPriorProbability = 0.3; | 30 static const double kInitialPriorProbability = 0.3; |
31 static const int kTransientWidthThreshold = 7; | 31 static const int kTransientWidthThreshold = 7; |
32 static const double kLowProbabilityThreshold = 0.2; | 32 static const double kLowProbabilityThreshold = 0.2; |
33 | 33 |
34 static double LimitProbability(double p) { | 34 static double LimitProbability(double p) { |
35 const double kLimHigh = 0.99; | 35 const double kLimHigh = 0.99; |
36 const double kLimLow = 0.01; | 36 const double kLimLow = 0.01; |
37 | 37 |
38 if (p > kLimHigh) | 38 if (p > kLimHigh) |
39 p = kLimHigh; | 39 p = kLimHigh; |
40 else if (p < kLimLow) | 40 else if (p < kLimLow) |
41 p = kLimLow; | 41 p = kLimLow; |
42 return p; | 42 return p; |
43 } | 43 } |
44 | 44 |
45 PitchBasedVad::PitchBasedVad() | 45 PitchBasedVad::PitchBasedVad() |
46 : p_prior_(kInitialPriorProbability), | 46 : p_prior_(kInitialPriorProbability), |
47 circular_buffer_(AgcCircularBuffer::Create(kPosteriorHistorySize)) { | 47 circular_buffer_(VadCircularBuffer::Create(kPosteriorHistorySize)) { |
48 // Setup noise GMM. | 48 // Setup noise GMM. |
49 noise_gmm_.dimension = kNoiseGmmDim; | 49 noise_gmm_.dimension = kNoiseGmmDim; |
50 noise_gmm_.num_mixtures = kNoiseGmmNumMixtures; | 50 noise_gmm_.num_mixtures = kNoiseGmmNumMixtures; |
51 noise_gmm_.weight = kNoiseGmmWeights; | 51 noise_gmm_.weight = kNoiseGmmWeights; |
52 noise_gmm_.mean = &kNoiseGmmMean[0][0]; | 52 noise_gmm_.mean = &kNoiseGmmMean[0][0]; |
53 noise_gmm_.covar_inverse = &kNoiseGmmCovarInverse[0][0][0]; | 53 noise_gmm_.covar_inverse = &kNoiseGmmCovarInverse[0][0][0]; |
54 | 54 |
55 // Setup voice GMM. | 55 // Setup voice GMM. |
56 voice_gmm_.dimension = kVoiceGmmDim; | 56 voice_gmm_.dimension = kVoiceGmmDim; |
57 voice_gmm_.num_mixtures = kVoiceGmmNumMixtures; | 57 voice_gmm_.num_mixtures = kVoiceGmmNumMixtures; |
58 voice_gmm_.weight = kVoiceGmmWeights; | 58 voice_gmm_.weight = kVoiceGmmWeights; |
59 voice_gmm_.mean = &kVoiceGmmMean[0][0]; | 59 voice_gmm_.mean = &kVoiceGmmMean[0][0]; |
60 voice_gmm_.covar_inverse = &kVoiceGmmCovarInverse[0][0][0]; | 60 voice_gmm_.covar_inverse = &kVoiceGmmCovarInverse[0][0][0]; |
61 } | 61 } |
62 | 62 |
63 PitchBasedVad::~PitchBasedVad() {} | 63 PitchBasedVad::~PitchBasedVad() { |
| 64 } |
64 | 65 |
65 int PitchBasedVad::VoicingProbability(const AudioFeatures& features, | 66 int PitchBasedVad::VoicingProbability(const AudioFeatures& features, |
66 double* p_combined) { | 67 double* p_combined) { |
67 double p; | 68 double p; |
68 double gmm_features[3]; | 69 double gmm_features[3]; |
69 double pdf_features_given_voice; | 70 double pdf_features_given_voice; |
70 double pdf_features_given_noise; | 71 double pdf_features_given_noise; |
71 // These limits are the same in matlab implementation 'VoicingProbGMM().' | 72 // These limits are the same in matlab implementation 'VoicingProbGMM().' |
72 const double kLimLowLogPitchGain = -2.0; | 73 const double kLimLowLogPitchGain = -2.0; |
73 const double kLimHighLogPitchGain = -0.9; | 74 const double kLimHighLogPitchGain = -0.9; |
74 const double kLimLowSpectralPeak = 200; | 75 const double kLimLowSpectralPeak = 200; |
75 const double kLimHighSpectralPeak = 2000; | 76 const double kLimHighSpectralPeak = 2000; |
76 const double kEps = 1e-12; | 77 const double kEps = 1e-12; |
77 for (int n = 0; n < features.num_frames; n++) { | 78 for (int n = 0; n < features.num_frames; n++) { |
78 gmm_features[0] = features.log_pitch_gain[n]; | 79 gmm_features[0] = features.log_pitch_gain[n]; |
79 gmm_features[1] = features.spectral_peak[n]; | 80 gmm_features[1] = features.spectral_peak[n]; |
80 gmm_features[2] = features.pitch_lag_hz[n]; | 81 gmm_features[2] = features.pitch_lag_hz[n]; |
81 | 82 |
82 pdf_features_given_voice = EvaluateGmm(gmm_features, voice_gmm_); | 83 pdf_features_given_voice = EvaluateGmm(gmm_features, voice_gmm_); |
83 pdf_features_given_noise = EvaluateGmm(gmm_features, noise_gmm_); | 84 pdf_features_given_noise = EvaluateGmm(gmm_features, noise_gmm_); |
84 | 85 |
85 if (features.spectral_peak[n] < kLimLowSpectralPeak || | 86 if (features.spectral_peak[n] < kLimLowSpectralPeak || |
86 features.spectral_peak[n] > kLimHighSpectralPeak || | 87 features.spectral_peak[n] > kLimHighSpectralPeak || |
87 features.log_pitch_gain[n] < kLimLowLogPitchGain) { | 88 features.log_pitch_gain[n] < kLimLowLogPitchGain) { |
88 pdf_features_given_voice = kEps * pdf_features_given_noise; | 89 pdf_features_given_voice = kEps * pdf_features_given_noise; |
89 } else if (features.log_pitch_gain[n] > kLimHighLogPitchGain) { | 90 } else if (features.log_pitch_gain[n] > kLimHighLogPitchGain) { |
90 pdf_features_given_noise = kEps * pdf_features_given_voice; | 91 pdf_features_given_noise = kEps * pdf_features_given_voice; |
91 } | 92 } |
92 | 93 |
93 p = p_prior_ * pdf_features_given_voice / (pdf_features_given_voice * | 94 p = p_prior_ * pdf_features_given_voice / |
94 p_prior_ + pdf_features_given_noise * (1 - p_prior_)); | 95 (pdf_features_given_voice * p_prior_ + |
| 96 pdf_features_given_noise * (1 - p_prior_)); |
95 | 97 |
96 p = LimitProbability(p); | 98 p = LimitProbability(p); |
97 | 99 |
98 // Combine pitch-based probability with standalone probability, before | 100 // Combine pitch-based probability with standalone probability, before |
99 // updating prior probabilities. | 101 // updating prior probabilities. |
100 double prod_active = p * p_combined[n]; | 102 double prod_active = p * p_combined[n]; |
101 double prod_inactive = (1 - p) * (1 - p_combined[n]); | 103 double prod_inactive = (1 - p) * (1 - p_combined[n]); |
102 p_combined[n] = prod_active / (prod_active + prod_inactive); | 104 p_combined[n] = prod_active / (prod_active + prod_inactive); |
103 | 105 |
104 if (UpdatePrior(p_combined[n]) < 0) | 106 if (UpdatePrior(p_combined[n]) < 0) |
105 return -1; | 107 return -1; |
106 // Limit prior probability. With a zero prior probability the posterior | 108 // Limit prior probability. With a zero prior probability the posterior |
107 // probability is always zero. | 109 // probability is always zero. |
108 p_prior_ = LimitProbability(p_prior_); | 110 p_prior_ = LimitProbability(p_prior_); |
109 } | 111 } |
110 return 0; | 112 return 0; |
111 } | 113 } |
112 | 114 |
113 int PitchBasedVad::UpdatePrior(double p) { | 115 int PitchBasedVad::UpdatePrior(double p) { |
114 circular_buffer_->Insert(p); | 116 circular_buffer_->Insert(p); |
115 if (circular_buffer_->RemoveTransient(kTransientWidthThreshold, | 117 if (circular_buffer_->RemoveTransient(kTransientWidthThreshold, |
116 kLowProbabilityThreshold) < 0) | 118 kLowProbabilityThreshold) < 0) |
117 return -1; | 119 return -1; |
118 p_prior_ = circular_buffer_->Mean(); | 120 p_prior_ = circular_buffer_->Mean(); |
119 return 0; | 121 return 0; |
120 } | 122 } |
121 | 123 |
122 } // namespace webrtc | 124 } // namespace webrtc |
OLD | NEW |