Index: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..932eff1091b689d5752ea228eb746a5bd05d3597 |
--- /dev/null |
+++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc |
@@ -0,0 +1,383 @@ |
+/* |
+ * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
+ * |
+ * Use of this source code is governed by a BSD-style license |
+ * that can be found in the LICENSE file in the root of the source |
+ * tree. An additional intellectual property rights grant can be found |
+ * in the file PATENTS. All contributing project authors may |
+ * be found in the AUTHORS file in the root of the source tree. |
+ */ |
+ |
+#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h" |
+ |
+#include <cmath> |
+#include <cstdlib> |
+ |
+#include <algorithm> |
+ |
+#include "webrtc/base/checks.h" |
+#include "webrtc/common_audio/vad/include/webrtc_vad.h" |
+#include "webrtc/common_audio/window_generator.h" |
+ |
+using std::complex; |
+using std::max; |
+using std::min; |
+ |
+namespace webrtc { |
+ |
+const int IntelligibilityEnhancer::kErbResolution = 2; |
+const int IntelligibilityEnhancer::kWindowSizeMs = 2; |
+// The size of the chunk provided by APM, in milliseconds. |
+const int IntelligibilityEnhancer::kChunkSizeMs = 10; |
+const int IntelligibilityEnhancer::kAnalyzeRate = 800; |
+const int IntelligibilityEnhancer::kVarianceRate = 2; |
+const float IntelligibilityEnhancer::kClipFreq = 200.0f; |
+const float IntelligibilityEnhancer::kConfigRho = 0.02f; |
+const float IntelligibilityEnhancer::kKbdAlpha = 1.5f; |
+const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f; |
+ |
+using VarianceType = intelligibility::VarianceArray::StepType; |
+ |
+IntelligibilityEnhancer::TransformCallback::TransformCallback( |
+ IntelligibilityEnhancer* parent, |
+ IntelligibilityEnhancer::AudioSource source) |
+ : parent_(parent), |
+ source_(source) {} |
+ |
+void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock( |
+ const complex<float>* const* in_block, |
+ int in_channels, int frames, int /* out_channels */, |
+ complex<float>* const* out_block) { |
+ DCHECK_EQ(parent_->freqs_, frames); |
+ for (int i = 0; i < in_channels; ++i) { |
+ parent_->DispatchAudio(source_, in_block[i], out_block[i]); |
+ } |
+} |
+ |
+IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution, |
+ int sample_rate_hz, |
+ int channels, |
+ int cv_type, float cv_alpha, |
+ int cv_win, |
+ int analysis_rate, |
+ int variance_rate, |
+ float gain_limit) |
+ : freqs_(RealFourier::ComplexLength(RealFourier::FftOrder( |
+ sample_rate_hz * kWindowSizeMs / 1000))), |
+ window_size_(1 << RealFourier::FftOrder(freqs_)), |
+ chunk_length_(sample_rate_hz * kChunkSizeMs / 1000), |
+ bank_size_(GetBankSize(sample_rate_hz, erb_resolution)), |
+ sample_rate_hz_(sample_rate_hz), |
+ erb_resolution_(erb_resolution), |
+ channels_(channels), |
+ analysis_rate_(analysis_rate), |
+ variance_rate_(variance_rate), |
+ clear_variance_(freqs_, static_cast<VarianceType>(cv_type), cv_win, |
+ cv_alpha), |
+ noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f), |
+ filtered_clear_var_(new float[bank_size_]), |
+ filtered_noise_var_(new float[bank_size_]), |
+ filter_bank_(nullptr), |
+ center_freqs_(new float[bank_size_]), |
+ rho_(new float[bank_size_]), |
+ gains_eq_(new float[bank_size_]), |
+ gain_applier_(freqs_, gain_limit), |
+ temp_out_buffer_(nullptr), |
+ input_audio_(new float*[channels]), |
+ kbd_window_(new float[window_size_]), |
+ render_callback_(this, AudioSource::kRenderStream), |
+ capture_callback_(this, AudioSource::kCaptureStream), |
+ block_count_(0), |
+ analysis_step_(0), |
+ vad_high_(nullptr), |
+ vad_low_(nullptr), |
+ vad_tmp_buffer_(new int16_t[chunk_length_]) { |
+ DCHECK_LE(kConfigRho, 1.0f); |
+ |
+ CreateErbBank(); |
+ |
+ WebRtcVad_Create(&vad_high_); |
+ WebRtcVad_Init(vad_high_); |
+ WebRtcVad_set_mode(vad_high_, 0); // high likelihood of speech |
+ WebRtcVad_Create(&vad_low_); |
+ WebRtcVad_Init(vad_low_); |
+ WebRtcVad_set_mode(vad_low_, 3); // low likelihood of speech |
+ |
+ temp_out_buffer_ = static_cast<float**>(malloc( |
+ sizeof(*temp_out_buffer_) * channels_ + |
+ sizeof(**temp_out_buffer_) * chunk_length_ * channels_)); |
+ for (int i = 0; i < channels_; ++i) { |
+ temp_out_buffer_[i] = reinterpret_cast<float*>(temp_out_buffer_ + channels_) |
+ + chunk_length_ * i; |
+ } |
+ |
+ for (int i = 0; i < bank_size_; ++i) { |
+ rho_[i] = kConfigRho * kConfigRho; |
+ } |
+ |
+ float freqs_khz = kClipFreq / 1000.0f; |
+ int erb_index = static_cast<int>(ceilf(11.17f * logf((freqs_khz + 0.312f) / |
+ (freqs_khz + 14.6575f)) |
+ + 43.0f)); |
+ start_freq_ = max(1, erb_index * kErbResolution); |
+ |
+ WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_, |
+ kbd_window_.get()); |
+ render_mangler_.reset(new LappedTransform(channels_, channels_, |
+ chunk_length_, |
+ kbd_window_.get(), |
+ window_size_, |
+ window_size_ / 2, |
+ &render_callback_)); |
+ capture_mangler_.reset(new LappedTransform(channels_, channels_, |
+ chunk_length_, |
+ kbd_window_.get(), |
+ window_size_, |
+ window_size_ / 2, |
+ &capture_callback_)); |
+} |
+ |
+IntelligibilityEnhancer::~IntelligibilityEnhancer() { |
+ WebRtcVad_Free(vad_low_); |
+ WebRtcVad_Free(vad_high_); |
+ free(filter_bank_); |
+} |
+ |
+void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) { |
+ for (int i = 0; i < chunk_length_; ++i) { |
+ vad_tmp_buffer_[i] = (int16_t)audio[0][i]; |
+ } |
+ has_voice_low_ = WebRtcVad_Process(vad_low_, sample_rate_hz_, |
+ vad_tmp_buffer_.get(), chunk_length_) == 1; |
+ |
+ render_mangler_->ProcessChunk(audio, temp_out_buffer_); |
+ for (int i = 0; i < channels_; ++i) { |
+ memcpy(audio[i], temp_out_buffer_[i], |
+ chunk_length_ * sizeof(**temp_out_buffer_)); |
+ } |
+} |
+ |
+void IntelligibilityEnhancer::ProcessCaptureAudio(float* const* audio) { |
+ for (int i = 0; i < chunk_length_; ++i) { |
+ vad_tmp_buffer_[i] = (int16_t)audio[0][i]; |
+ } |
+ // TODO(bercic): the VAD was always detecting voice in the noise stream, |
+ // no matter what the aggressiveness, so it was temporarily disabled here |
+ |
+ //if (WebRtcVad_Process(vad_high_, sample_rate_hz_, vad_tmp_buffer_.get(), |
+ // chunk_length_) == 1) { |
+ // printf("capture HAS speech\n"); |
+ // return; |
+ //} |
+ //printf("capture NO speech\n"); |
+ capture_mangler_->ProcessChunk(audio, temp_out_buffer_); |
+} |
+ |
+void IntelligibilityEnhancer::DispatchAudio( |
+ IntelligibilityEnhancer::AudioSource source, |
+ const complex<float>* in_block, complex<float>* out_block) { |
+ switch (source) { |
+ case kRenderStream: |
+ ProcessClearBlock(in_block, out_block); |
+ break; |
+ case kCaptureStream: |
+ ProcessNoiseBlock(in_block, out_block); |
+ break; |
+ } |
+} |
+ |
+void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block, |
+ complex<float>* out_block) { |
+ float power_target; |
+ |
+ if (block_count_ < 2) { |
+ memset(out_block, 0, freqs_ * sizeof(*out_block)); |
+ ++block_count_; |
+ return; |
+ } |
+ |
+ if (has_voice_low_ || true) { |
+ clear_variance_.Step(in_block, false); |
+ power_target = std::accumulate(clear_variance_.variance(), |
+ clear_variance_.variance() + freqs_, 0.0f); |
+ |
+ if (block_count_ % analysis_rate_ == analysis_rate_ - 1) { |
+ AnalyzeClearBlock(power_target); |
+ ++analysis_step_; |
+ if (analysis_step_ == variance_rate_) { |
+ analysis_step_ = 0; |
+ clear_variance_.Clear(); |
+ noise_variance_.Clear(); |
+ } |
+ } |
+ ++block_count_; |
+ } |
+ |
+ /* efidata(n,:) = sqrt(b(n)) * fidata(n,:) */ |
+ gain_applier_.Apply(in_block, out_block); |
+} |
+ |
+void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) { |
+ FilterVariance(clear_variance_.variance(), filtered_clear_var_.get()); |
+ FilterVariance(noise_variance_.variance(), filtered_noise_var_.get()); |
+ |
+ /* lambda binary search */ |
+ |
+ float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda; |
+ float power_bot, power_top, power; |
+ SolveEquation14(lambda_top, start_freq_, gains_eq_.get()); |
+ power_top = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), |
+ bank_size_); |
+ SolveEquation14(lambda_bot, start_freq_, gains_eq_.get()); |
+ power_bot = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), |
+ bank_size_); |
+ DCHECK(power_target >= power_bot && power_target <= power_top); |
+ |
+ float power_ratio = 2.0f; |
+ int iters = 0; |
+ while (fabs(power_ratio - 1.0f) > 0.001f && iters <= 100) { |
+ lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f; |
+ SolveEquation14(lambda, start_freq_, gains_eq_.get()); |
+ power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_); |
+ if (power < power_target) { |
+ lambda_bot = lambda; |
+ } else { |
+ lambda_top = lambda; |
+ } |
+ power_ratio = fabs(power / power_target); |
+ ++iters; |
+ } |
+ |
+ /* b = filterbank' * b */ |
+ float* gains = gain_applier_.target(); |
+ for (int i = 0; i < freqs_; ++i) { |
+ gains[i] = 0.0f; |
+ for (int j = 0; j < bank_size_; ++j) { |
+ gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]); |
+ } |
+ } |
+} |
+ |
+void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block, |
+ complex<float>* /*out_block*/) { |
+ noise_variance_.Step(in_block); |
+} |
+ |
+int IntelligibilityEnhancer::GetBankSize(int sample_rate, int erb_resolution) { |
+ float freq_limit = sample_rate / 2000.0f; |
+ int erb_scale = ceilf(11.17f * logf((freq_limit + 0.312f) / |
+ (freq_limit + 14.6575f)) + 43.0f); |
+ return erb_scale * erb_resolution; |
+} |
+ |
+void IntelligibilityEnhancer::CreateErbBank() { |
+ int lf = 1, rf = 4; |
+ |
+ for (int i = 0; i < bank_size_; ++i) { |
+ float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_)); |
+ center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp)); |
+ center_freqs_[i] -= 14678.49f; |
+ } |
+ float last_center_freq = center_freqs_[bank_size_ - 1]; |
+ for (int i = 0; i < bank_size_; ++i) { |
+ center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq; |
+ } |
+ |
+ filter_bank_ = static_cast<float**>(malloc( |
+ sizeof(*filter_bank_) * bank_size_ + |
+ sizeof(**filter_bank_) * freqs_ * bank_size_)); |
+ for (int i = 0; i < bank_size_; ++i) { |
+ filter_bank_[i] = reinterpret_cast<float*>(filter_bank_ + bank_size_) + |
+ freqs_ * i; |
+ } |
+ |
+ for (int i = 1; i <= bank_size_; ++i) { |
+ int lll, ll, rr, rrr; |
+ lll = round(center_freqs_[max(1, i - lf) - 1] * freqs_ / |
+ (0.5f * sample_rate_hz_)); |
+ ll = round(center_freqs_[max(1, i ) - 1] * freqs_ / |
+ (0.5f * sample_rate_hz_)); |
+ lll = min(freqs_, max(lll, 1)) - 1; |
+ ll = min(freqs_, max(ll, 1)) - 1; |
+ |
+ rrr = round(center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ / |
+ (0.5f * sample_rate_hz_)); |
+ rr = round(center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ / |
+ (0.5f * sample_rate_hz_)); |
+ rrr = min(freqs_, max(rrr, 1)) - 1; |
+ rr = min(freqs_, max(rr, 1)) - 1; |
+ |
+ float step, element; |
+ |
+ step = 1.0f / (ll - lll); |
+ element = 0.0f; |
+ for (int j = lll; j <= ll; ++j) { |
+ filter_bank_[i - 1][j] = element; |
+ element += step; |
+ } |
+ step = 1.0f / (rrr - rr); |
+ element = 1.0f; |
+ for (int j = rr; j <= rrr; ++j) { |
+ filter_bank_[i - 1][j] = element; |
+ element -= step; |
+ } |
+ for (int j = ll; j <= rr; ++j) { |
+ filter_bank_[i - 1][j] = 1.0f; |
+ } |
+ } |
+ |
+ float sum; |
+ for (int i = 0; i < freqs_; ++i) { |
+ sum = 0.0f; |
+ for (int j = 0; j < bank_size_; ++j) { |
+ sum += filter_bank_[j][i]; |
+ } |
+ for (int j = 0; j < bank_size_; ++j) { |
+ filter_bank_[j][i] /= sum; |
+ } |
+ } |
+} |
+ |
+void IntelligibilityEnhancer::SolveEquation14(float lambda, int start_freq, |
+ float* sols) { |
+ bool quadratic = (kConfigRho < 1.0f); |
+ const float* var_x0 = filtered_clear_var_.get(); |
+ const float* var_n0 = filtered_noise_var_.get(); |
+ |
+ for (int n = 0; n < start_freq; ++n) { |
+ sols[n] = 1.0f; |
+ } |
+ for (int n = start_freq - 1; n < bank_size_; ++n) { |
+ float alpha0, beta0, gamma0; |
+ gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] + |
+ lambda * var_x0[n] * var_n0[n] * var_n0[n]; |
+ beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n]; |
+ if (quadratic) { |
+ alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n]; |
+ sols[n] = (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0)) |
+ / (2 * alpha0); |
+ } else { |
+ sols[n] = -gamma0 / beta0; |
+ } |
+ sols[n] = fmax(0, sols[n]); |
+ } |
+} |
+ |
+void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) { |
+ for (int i = 0; i < bank_size_; ++i) { |
+ result[i] = DotProduct(filter_bank_[i], var, freqs_); |
+ } |
+} |
+ |
+float IntelligibilityEnhancer::DotProduct(const float* a, const float* b, |
+ int length) { |
+ float ret = 0.0f; |
+ |
+ for (int i = 0; i < length; ++i) { |
+ ret = fmaf(a[i], b[i], ret); |
+ } |
+ return ret; |
+} |
+ |
+} // namespace webrtc |
+ |