| Index: webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
|
| diff --git a/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..932eff1091b689d5752ea228eb746a5bd05d3597
|
| --- /dev/null
|
| +++ b/webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.cc
|
| @@ -0,0 +1,383 @@
|
| +/*
|
| + * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license
|
| + * that can be found in the LICENSE file in the root of the source
|
| + * tree. An additional intellectual property rights grant can be found
|
| + * in the file PATENTS. All contributing project authors may
|
| + * be found in the AUTHORS file in the root of the source tree.
|
| + */
|
| +
|
| +#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
|
| +
|
| +#include <cmath>
|
| +#include <cstdlib>
|
| +
|
| +#include <algorithm>
|
| +
|
| +#include "webrtc/base/checks.h"
|
| +#include "webrtc/common_audio/vad/include/webrtc_vad.h"
|
| +#include "webrtc/common_audio/window_generator.h"
|
| +
|
| +using std::complex;
|
| +using std::max;
|
| +using std::min;
|
| +
|
| +namespace webrtc {
|
| +
|
| +const int IntelligibilityEnhancer::kErbResolution = 2;
|
| +const int IntelligibilityEnhancer::kWindowSizeMs = 2;
|
| +// The size of the chunk provided by APM, in milliseconds.
|
| +const int IntelligibilityEnhancer::kChunkSizeMs = 10;
|
| +const int IntelligibilityEnhancer::kAnalyzeRate = 800;
|
| +const int IntelligibilityEnhancer::kVarianceRate = 2;
|
| +const float IntelligibilityEnhancer::kClipFreq = 200.0f;
|
| +const float IntelligibilityEnhancer::kConfigRho = 0.02f;
|
| +const float IntelligibilityEnhancer::kKbdAlpha = 1.5f;
|
| +const float IntelligibilityEnhancer::kGainChangeLimit = 0.0125f;
|
| +
|
| +using VarianceType = intelligibility::VarianceArray::StepType;
|
| +
|
| +IntelligibilityEnhancer::TransformCallback::TransformCallback(
|
| + IntelligibilityEnhancer* parent,
|
| + IntelligibilityEnhancer::AudioSource source)
|
| + : parent_(parent),
|
| + source_(source) {}
|
| +
|
| +void IntelligibilityEnhancer::TransformCallback::ProcessAudioBlock(
|
| + const complex<float>* const* in_block,
|
| + int in_channels, int frames, int /* out_channels */,
|
| + complex<float>* const* out_block) {
|
| + DCHECK_EQ(parent_->freqs_, frames);
|
| + for (int i = 0; i < in_channels; ++i) {
|
| + parent_->DispatchAudio(source_, in_block[i], out_block[i]);
|
| + }
|
| +}
|
| +
|
| +IntelligibilityEnhancer::IntelligibilityEnhancer(int erb_resolution,
|
| + int sample_rate_hz,
|
| + int channels,
|
| + int cv_type, float cv_alpha,
|
| + int cv_win,
|
| + int analysis_rate,
|
| + int variance_rate,
|
| + float gain_limit)
|
| + : freqs_(RealFourier::ComplexLength(RealFourier::FftOrder(
|
| + sample_rate_hz * kWindowSizeMs / 1000))),
|
| + window_size_(1 << RealFourier::FftOrder(freqs_)),
|
| + chunk_length_(sample_rate_hz * kChunkSizeMs / 1000),
|
| + bank_size_(GetBankSize(sample_rate_hz, erb_resolution)),
|
| + sample_rate_hz_(sample_rate_hz),
|
| + erb_resolution_(erb_resolution),
|
| + channels_(channels),
|
| + analysis_rate_(analysis_rate),
|
| + variance_rate_(variance_rate),
|
| + clear_variance_(freqs_, static_cast<VarianceType>(cv_type), cv_win,
|
| + cv_alpha),
|
| + noise_variance_(freqs_, VarianceType::kStepInfinite, 475, 0.01f),
|
| + filtered_clear_var_(new float[bank_size_]),
|
| + filtered_noise_var_(new float[bank_size_]),
|
| + filter_bank_(nullptr),
|
| + center_freqs_(new float[bank_size_]),
|
| + rho_(new float[bank_size_]),
|
| + gains_eq_(new float[bank_size_]),
|
| + gain_applier_(freqs_, gain_limit),
|
| + temp_out_buffer_(nullptr),
|
| + input_audio_(new float*[channels]),
|
| + kbd_window_(new float[window_size_]),
|
| + render_callback_(this, AudioSource::kRenderStream),
|
| + capture_callback_(this, AudioSource::kCaptureStream),
|
| + block_count_(0),
|
| + analysis_step_(0),
|
| + vad_high_(nullptr),
|
| + vad_low_(nullptr),
|
| + vad_tmp_buffer_(new int16_t[chunk_length_]) {
|
| + DCHECK_LE(kConfigRho, 1.0f);
|
| +
|
| + CreateErbBank();
|
| +
|
| + WebRtcVad_Create(&vad_high_);
|
| + WebRtcVad_Init(vad_high_);
|
| + WebRtcVad_set_mode(vad_high_, 0); // high likelihood of speech
|
| + WebRtcVad_Create(&vad_low_);
|
| + WebRtcVad_Init(vad_low_);
|
| + WebRtcVad_set_mode(vad_low_, 3); // low likelihood of speech
|
| +
|
| + temp_out_buffer_ = static_cast<float**>(malloc(
|
| + sizeof(*temp_out_buffer_) * channels_ +
|
| + sizeof(**temp_out_buffer_) * chunk_length_ * channels_));
|
| + for (int i = 0; i < channels_; ++i) {
|
| + temp_out_buffer_[i] = reinterpret_cast<float*>(temp_out_buffer_ + channels_)
|
| + + chunk_length_ * i;
|
| + }
|
| +
|
| + for (int i = 0; i < bank_size_; ++i) {
|
| + rho_[i] = kConfigRho * kConfigRho;
|
| + }
|
| +
|
| + float freqs_khz = kClipFreq / 1000.0f;
|
| + int erb_index = static_cast<int>(ceilf(11.17f * logf((freqs_khz + 0.312f) /
|
| + (freqs_khz + 14.6575f))
|
| + + 43.0f));
|
| + start_freq_ = max(1, erb_index * kErbResolution);
|
| +
|
| + WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size_,
|
| + kbd_window_.get());
|
| + render_mangler_.reset(new LappedTransform(channels_, channels_,
|
| + chunk_length_,
|
| + kbd_window_.get(),
|
| + window_size_,
|
| + window_size_ / 2,
|
| + &render_callback_));
|
| + capture_mangler_.reset(new LappedTransform(channels_, channels_,
|
| + chunk_length_,
|
| + kbd_window_.get(),
|
| + window_size_,
|
| + window_size_ / 2,
|
| + &capture_callback_));
|
| +}
|
| +
|
| +IntelligibilityEnhancer::~IntelligibilityEnhancer() {
|
| + WebRtcVad_Free(vad_low_);
|
| + WebRtcVad_Free(vad_high_);
|
| + free(filter_bank_);
|
| +}
|
| +
|
| +void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio) {
|
| + for (int i = 0; i < chunk_length_; ++i) {
|
| + vad_tmp_buffer_[i] = (int16_t)audio[0][i];
|
| + }
|
| + has_voice_low_ = WebRtcVad_Process(vad_low_, sample_rate_hz_,
|
| + vad_tmp_buffer_.get(), chunk_length_) == 1;
|
| +
|
| + render_mangler_->ProcessChunk(audio, temp_out_buffer_);
|
| + for (int i = 0; i < channels_; ++i) {
|
| + memcpy(audio[i], temp_out_buffer_[i],
|
| + chunk_length_ * sizeof(**temp_out_buffer_));
|
| + }
|
| +}
|
| +
|
| +void IntelligibilityEnhancer::ProcessCaptureAudio(float* const* audio) {
|
| + for (int i = 0; i < chunk_length_; ++i) {
|
| + vad_tmp_buffer_[i] = (int16_t)audio[0][i];
|
| + }
|
| + // TODO(bercic): the VAD was always detecting voice in the noise stream,
|
| + // no matter what the aggressiveness, so it was temporarily disabled here
|
| +
|
| + //if (WebRtcVad_Process(vad_high_, sample_rate_hz_, vad_tmp_buffer_.get(),
|
| + // chunk_length_) == 1) {
|
| + // printf("capture HAS speech\n");
|
| + // return;
|
| + //}
|
| + //printf("capture NO speech\n");
|
| + capture_mangler_->ProcessChunk(audio, temp_out_buffer_);
|
| +}
|
| +
|
| +void IntelligibilityEnhancer::DispatchAudio(
|
| + IntelligibilityEnhancer::AudioSource source,
|
| + const complex<float>* in_block, complex<float>* out_block) {
|
| + switch (source) {
|
| + case kRenderStream:
|
| + ProcessClearBlock(in_block, out_block);
|
| + break;
|
| + case kCaptureStream:
|
| + ProcessNoiseBlock(in_block, out_block);
|
| + break;
|
| + }
|
| +}
|
| +
|
| +void IntelligibilityEnhancer::ProcessClearBlock(const complex<float>* in_block,
|
| + complex<float>* out_block) {
|
| + float power_target;
|
| +
|
| + if (block_count_ < 2) {
|
| + memset(out_block, 0, freqs_ * sizeof(*out_block));
|
| + ++block_count_;
|
| + return;
|
| + }
|
| +
|
| + if (has_voice_low_ || true) {
|
| + clear_variance_.Step(in_block, false);
|
| + power_target = std::accumulate(clear_variance_.variance(),
|
| + clear_variance_.variance() + freqs_, 0.0f);
|
| +
|
| + if (block_count_ % analysis_rate_ == analysis_rate_ - 1) {
|
| + AnalyzeClearBlock(power_target);
|
| + ++analysis_step_;
|
| + if (analysis_step_ == variance_rate_) {
|
| + analysis_step_ = 0;
|
| + clear_variance_.Clear();
|
| + noise_variance_.Clear();
|
| + }
|
| + }
|
| + ++block_count_;
|
| + }
|
| +
|
| + /* efidata(n,:) = sqrt(b(n)) * fidata(n,:) */
|
| + gain_applier_.Apply(in_block, out_block);
|
| +}
|
| +
|
| +void IntelligibilityEnhancer::AnalyzeClearBlock(float power_target) {
|
| + FilterVariance(clear_variance_.variance(), filtered_clear_var_.get());
|
| + FilterVariance(noise_variance_.variance(), filtered_noise_var_.get());
|
| +
|
| + /* lambda binary search */
|
| +
|
| + float lambda_bot = -1.0f, lambda_top = -10e-18f, lambda;
|
| + float power_bot, power_top, power;
|
| + SolveEquation14(lambda_top, start_freq_, gains_eq_.get());
|
| + power_top = DotProduct(gains_eq_.get(), filtered_clear_var_.get(),
|
| + bank_size_);
|
| + SolveEquation14(lambda_bot, start_freq_, gains_eq_.get());
|
| + power_bot = DotProduct(gains_eq_.get(), filtered_clear_var_.get(),
|
| + bank_size_);
|
| + DCHECK(power_target >= power_bot && power_target <= power_top);
|
| +
|
| + float power_ratio = 2.0f;
|
| + int iters = 0;
|
| + while (fabs(power_ratio - 1.0f) > 0.001f && iters <= 100) {
|
| + lambda = lambda_bot + (lambda_top - lambda_bot) / 2.0f;
|
| + SolveEquation14(lambda, start_freq_, gains_eq_.get());
|
| + power = DotProduct(gains_eq_.get(), filtered_clear_var_.get(), bank_size_);
|
| + if (power < power_target) {
|
| + lambda_bot = lambda;
|
| + } else {
|
| + lambda_top = lambda;
|
| + }
|
| + power_ratio = fabs(power / power_target);
|
| + ++iters;
|
| + }
|
| +
|
| + /* b = filterbank' * b */
|
| + float* gains = gain_applier_.target();
|
| + for (int i = 0; i < freqs_; ++i) {
|
| + gains[i] = 0.0f;
|
| + for (int j = 0; j < bank_size_; ++j) {
|
| + gains[i] = fmaf(filter_bank_[j][i], gains_eq_[j], gains[i]);
|
| + }
|
| + }
|
| +}
|
| +
|
| +void IntelligibilityEnhancer::ProcessNoiseBlock(const complex<float>* in_block,
|
| + complex<float>* /*out_block*/) {
|
| + noise_variance_.Step(in_block);
|
| +}
|
| +
|
| +int IntelligibilityEnhancer::GetBankSize(int sample_rate, int erb_resolution) {
|
| + float freq_limit = sample_rate / 2000.0f;
|
| + int erb_scale = ceilf(11.17f * logf((freq_limit + 0.312f) /
|
| + (freq_limit + 14.6575f)) + 43.0f);
|
| + return erb_scale * erb_resolution;
|
| +}
|
| +
|
| +void IntelligibilityEnhancer::CreateErbBank() {
|
| + int lf = 1, rf = 4;
|
| +
|
| + for (int i = 0; i < bank_size_; ++i) {
|
| + float abs_temp = fabsf((i + 1.0f) / static_cast<float>(erb_resolution_));
|
| + center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp));
|
| + center_freqs_[i] -= 14678.49f;
|
| + }
|
| + float last_center_freq = center_freqs_[bank_size_ - 1];
|
| + for (int i = 0; i < bank_size_; ++i) {
|
| + center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq;
|
| + }
|
| +
|
| + filter_bank_ = static_cast<float**>(malloc(
|
| + sizeof(*filter_bank_) * bank_size_ +
|
| + sizeof(**filter_bank_) * freqs_ * bank_size_));
|
| + for (int i = 0; i < bank_size_; ++i) {
|
| + filter_bank_[i] = reinterpret_cast<float*>(filter_bank_ + bank_size_) +
|
| + freqs_ * i;
|
| + }
|
| +
|
| + for (int i = 1; i <= bank_size_; ++i) {
|
| + int lll, ll, rr, rrr;
|
| + lll = round(center_freqs_[max(1, i - lf) - 1] * freqs_ /
|
| + (0.5f * sample_rate_hz_));
|
| + ll = round(center_freqs_[max(1, i ) - 1] * freqs_ /
|
| + (0.5f * sample_rate_hz_));
|
| + lll = min(freqs_, max(lll, 1)) - 1;
|
| + ll = min(freqs_, max(ll, 1)) - 1;
|
| +
|
| + rrr = round(center_freqs_[min(bank_size_, i + rf) - 1] * freqs_ /
|
| + (0.5f * sample_rate_hz_));
|
| + rr = round(center_freqs_[min(bank_size_, i + 1) - 1] * freqs_ /
|
| + (0.5f * sample_rate_hz_));
|
| + rrr = min(freqs_, max(rrr, 1)) - 1;
|
| + rr = min(freqs_, max(rr, 1)) - 1;
|
| +
|
| + float step, element;
|
| +
|
| + step = 1.0f / (ll - lll);
|
| + element = 0.0f;
|
| + for (int j = lll; j <= ll; ++j) {
|
| + filter_bank_[i - 1][j] = element;
|
| + element += step;
|
| + }
|
| + step = 1.0f / (rrr - rr);
|
| + element = 1.0f;
|
| + for (int j = rr; j <= rrr; ++j) {
|
| + filter_bank_[i - 1][j] = element;
|
| + element -= step;
|
| + }
|
| + for (int j = ll; j <= rr; ++j) {
|
| + filter_bank_[i - 1][j] = 1.0f;
|
| + }
|
| + }
|
| +
|
| + float sum;
|
| + for (int i = 0; i < freqs_; ++i) {
|
| + sum = 0.0f;
|
| + for (int j = 0; j < bank_size_; ++j) {
|
| + sum += filter_bank_[j][i];
|
| + }
|
| + for (int j = 0; j < bank_size_; ++j) {
|
| + filter_bank_[j][i] /= sum;
|
| + }
|
| + }
|
| +}
|
| +
|
| +void IntelligibilityEnhancer::SolveEquation14(float lambda, int start_freq,
|
| + float* sols) {
|
| + bool quadratic = (kConfigRho < 1.0f);
|
| + const float* var_x0 = filtered_clear_var_.get();
|
| + const float* var_n0 = filtered_noise_var_.get();
|
| +
|
| + for (int n = 0; n < start_freq; ++n) {
|
| + sols[n] = 1.0f;
|
| + }
|
| + for (int n = start_freq - 1; n < bank_size_; ++n) {
|
| + float alpha0, beta0, gamma0;
|
| + gamma0 = 0.5f * rho_[n] * var_x0[n] * var_n0[n] +
|
| + lambda * var_x0[n] * var_n0[n] * var_n0[n];
|
| + beta0 = lambda * var_x0[n] * (2 - rho_[n]) * var_x0[n] * var_n0[n];
|
| + if (quadratic) {
|
| + alpha0 = lambda * var_x0[n] * (1 - rho_[n]) * var_x0[n] * var_x0[n];
|
| + sols[n] = (-beta0 - sqrtf(beta0 * beta0 - 4 * alpha0 * gamma0))
|
| + / (2 * alpha0);
|
| + } else {
|
| + sols[n] = -gamma0 / beta0;
|
| + }
|
| + sols[n] = fmax(0, sols[n]);
|
| + }
|
| +}
|
| +
|
| +void IntelligibilityEnhancer::FilterVariance(const float* var, float* result) {
|
| + for (int i = 0; i < bank_size_; ++i) {
|
| + result[i] = DotProduct(filter_bank_[i], var, freqs_);
|
| + }
|
| +}
|
| +
|
| +float IntelligibilityEnhancer::DotProduct(const float* a, const float* b,
|
| + int length) {
|
| + float ret = 0.0f;
|
| +
|
| + for (int i = 0; i < length; ++i) {
|
| + ret = fmaf(a[i], b[i], ret);
|
| + }
|
| + return ret;
|
| +}
|
| +
|
| +} // namespace webrtc
|
| +
|
|
|