OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license |
| 5 * that can be found in the LICENSE file in the root of the source |
| 6 * tree. An additional intellectual property rights grant can be found |
| 7 * in the file PATENTS. All contributing project authors may |
| 8 * be found in the AUTHORS file in the root of the source tree. |
| 9 */ |
| 10 |
| 11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils.
h" |
| 12 |
| 13 #include <algorithm> |
| 14 #include <cmath> |
| 15 #include <cstring> |
| 16 |
| 17 using std::complex; |
| 18 |
| 19 namespace { |
| 20 |
| 21 // Return |current| changed towards |target|, with the change being at most |
| 22 // |limit|. |
| 23 inline float UpdateFactor(float target, float current, float limit) { |
| 24 float delta = fabsf(target - current); |
| 25 float sign = copysign(1.0f, target - current); |
| 26 return current + sign * fminf(delta, limit); |
| 27 } |
| 28 |
| 29 // std::isfinite for complex numbers. |
| 30 inline bool cplxfinite(complex<float> c) { |
| 31 return std::isfinite(c.real()) && std::isfinite(c.imag()); |
| 32 } |
| 33 |
| 34 // std::isnormal for complex numbers. |
| 35 inline bool cplxnormal(complex<float> c) { |
| 36 return std::isnormal(c.real()) && std::isnormal(c.imag()); |
| 37 } |
| 38 |
| 39 // Apply a small fudge to degenerate complex values. The numbers in the array |
| 40 // were chosen randomly, so that even a series of all zeroes has some small |
| 41 // variability. |
| 42 inline complex<float> zerofudge(complex<float> c) { |
| 43 const static complex<float> fudge[7] = { |
| 44 {0.001f, 0.002f}, {0.008f, 0.001f}, {0.003f, 0.008f}, {0.0006f, 0.0009f}, |
| 45 {0.001f, 0.004f}, {0.003f, 0.004f}, {0.002f, 0.009f} |
| 46 }; |
| 47 static int fudge_index = 0; |
| 48 if (cplxfinite(c) && !cplxnormal(c)) { |
| 49 fudge_index = (fudge_index + 1) % 7; |
| 50 return c + fudge[fudge_index]; |
| 51 } |
| 52 return c; |
| 53 } |
| 54 |
| 55 // Incremental mean computation. Return the mean of the series with the |
| 56 // mean |mean| with added |data|. |
| 57 inline complex<float> NewMean(complex<float> mean, complex<float> data, |
| 58 int count) { |
| 59 return mean + (data - mean) / static_cast<float>(count); |
| 60 } |
| 61 |
| 62 inline void AddToMean(complex<float> data, int count, complex<float>* mean) { |
| 63 (*mean) = NewMean(*mean, data, count); |
| 64 } |
| 65 |
| 66 } // namespace |
| 67 |
| 68 using std::min; |
| 69 |
| 70 namespace webrtc { |
| 71 |
| 72 namespace intelligibility { |
| 73 |
| 74 static const int kWindowBlockSize = 10; |
| 75 |
| 76 VarianceArray::VarianceArray(int freqs, StepType type, int window_size, |
| 77 float decay) |
| 78 : running_mean_(new complex<float>[freqs]()), |
| 79 running_mean_sq_(new complex<float>[freqs]()), |
| 80 sub_running_mean_(new complex<float>[freqs]()), |
| 81 sub_running_mean_sq_(new complex<float>[freqs]()), |
| 82 variance_(new float[freqs]()), |
| 83 conj_sum_(new float[freqs]()), |
| 84 freqs_(freqs), |
| 85 window_size_(window_size), |
| 86 decay_(decay), |
| 87 history_cursor_(0), |
| 88 count_(0), |
| 89 array_mean_(0.0f) { |
| 90 history_.reset(new scoped_ptr<complex<float>[]>[freqs_]()); |
| 91 for (int i = 0; i < freqs_; ++i) { |
| 92 history_[i].reset(new complex<float>[window_size_]()); |
| 93 } |
| 94 subhistory_.reset(new scoped_ptr<complex<float>[]>[freqs_]()); |
| 95 for (int i = 0; i < freqs_; ++i) { |
| 96 subhistory_[i].reset(new complex<float>[window_size_]()); |
| 97 } |
| 98 subhistory_sq_.reset(new scoped_ptr<complex<float>[]>[freqs_]()); |
| 99 for (int i = 0; i < freqs_; ++i) { |
| 100 subhistory_sq_[i].reset(new complex<float>[window_size_]()); |
| 101 } |
| 102 switch (type) { |
| 103 case kStepInfinite: |
| 104 step_func_ = &VarianceArray::InfiniteStep; |
| 105 break; |
| 106 case kStepDecaying: |
| 107 step_func_ = &VarianceArray::DecayStep; |
| 108 break; |
| 109 case kStepWindowed: |
| 110 step_func_ = &VarianceArray::WindowedStep; |
| 111 break; |
| 112 case kStepBlocked: |
| 113 step_func_ = &VarianceArray::BlockedStep; |
| 114 break; |
| 115 } |
| 116 } |
| 117 |
| 118 // Compute the variance with Welford's algorithm, adding some fudge to |
| 119 // the input in case of all-zeroes. |
| 120 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) { |
| 121 array_mean_ = 0.0f; |
| 122 ++count_; |
| 123 for (int i = 0; i < freqs_; ++i) { |
| 124 complex<float> sample = data[i]; |
| 125 if (!skip_fudge) { |
| 126 sample = zerofudge(sample); |
| 127 } |
| 128 if (count_ == 1) { |
| 129 running_mean_[i] = sample; |
| 130 variance_[i] = 0.0f; |
| 131 } else { |
| 132 float old_sum = conj_sum_[i]; |
| 133 complex<float> old_mean = running_mean_[i]; |
| 134 running_mean_[i] = old_mean + (sample - old_mean) / |
| 135 static_cast<float>(count_); |
| 136 conj_sum_[i] = (old_sum + std::conj(sample - old_mean) * |
| 137 (sample - running_mean_[i])).real(); |
| 138 variance_[i] = conj_sum_[i] / (count_ - 1); // + fudge[fudge_index].real()
; |
| 139 if (skip_fudge && false) { |
| 140 //variance_[i] -= fudge[fudge_index].real(); |
| 141 } |
| 142 } |
| 143 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 144 } |
| 145 } |
| 146 |
| 147 // Compute the variance from the beginning, with exponential decaying of the |
| 148 // series data. |
| 149 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) { |
| 150 array_mean_ = 0.0f; |
| 151 ++count_; |
| 152 for (int i = 0; i < freqs_; ++i) { |
| 153 complex<float> sample = data[i]; |
| 154 sample = zerofudge(sample); |
| 155 |
| 156 if (count_ == 1) { |
| 157 running_mean_[i] = sample; |
| 158 running_mean_sq_[i] = sample * std::conj(sample); |
| 159 variance_[i] = 0.0f; |
| 160 } else { |
| 161 complex<float> prev = running_mean_[i]; |
| 162 complex<float> prev2 = running_mean_sq_[i]; |
| 163 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample; |
| 164 running_mean_sq_[i] = decay_ * prev2 + |
| 165 (1.0f - decay_) * sample * std::conj(sample); |
| 166 //variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * ( |
| 167 // (sample - running_mean_[i]) * std::conj(sample - running_mean_[i])).re
al(); |
| 168 variance_[i] = (running_mean_sq_[i] - running_mean_[i] * std::conj(running
_mean_[i])).real(); |
| 169 } |
| 170 |
| 171 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 172 } |
| 173 } |
| 174 |
| 175 // Windowed variance computation. On each step, the variances for the |
| 176 // window are recomputed from scratch, using Welford's algorithm. |
| 177 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) { |
| 178 int num = min(count_ + 1, window_size_); |
| 179 array_mean_ = 0.0f; |
| 180 for (int i = 0; i < freqs_; ++i) { |
| 181 complex<float> mean; |
| 182 float conj_sum = 0.0f; |
| 183 |
| 184 history_[i][history_cursor_] = data[i]; |
| 185 |
| 186 mean = history_[i][history_cursor_]; |
| 187 variance_[i] = 0.0f; |
| 188 for (int j = 1; j < num; ++j) { |
| 189 complex<float> sample = zerofudge( |
| 190 history_[i][(history_cursor_ + j) % window_size_]); |
| 191 sample = history_[i][(history_cursor_ + j) % window_size_]; |
| 192 float old_sum = conj_sum; |
| 193 complex<float> old_mean = mean; |
| 194 |
| 195 mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1); |
| 196 conj_sum = (old_sum + std::conj(sample - old_mean) * |
| 197 (sample - mean)).real(); |
| 198 variance_[i] = conj_sum / (j); |
| 199 } |
| 200 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 201 } |
| 202 history_cursor_ = (history_cursor_ + 1) % window_size_; |
| 203 ++count_; |
| 204 } |
| 205 |
| 206 // Variance with a window of blocks. Within each block, the variances are |
| 207 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|. |
| 208 // Once a block is filled with kWindowBlockSize samples, it is added to the |
| 209 // history window and a new block is started. The variances for the window |
| 210 // are recomputed from scratch at each of these transitions. |
| 211 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) { |
| 212 int blocks = min(window_size_, history_cursor_); |
| 213 for (int i = 0; i < freqs_; ++i) { |
| 214 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]); |
| 215 AddToMean(data[i] * std::conj(data[i]), count_ + 1, |
| 216 &sub_running_mean_sq_[i]); |
| 217 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i]; |
| 218 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i]; |
| 219 |
| 220 variance_[i] = (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i], |
| 221 blocks) - |
| 222 NewMean(running_mean_[i], sub_running_mean_[i], blocks) * |
| 223 std::conj(NewMean(running_mean_[i], sub_running_mean_[i], |
| 224 blocks))).real(); |
| 225 if (count_ == kWindowBlockSize - 1) { |
| 226 sub_running_mean_[i] = complex<float>(0.0f, 0.0f); |
| 227 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
| 228 running_mean_[i] = complex<float>(0.0f, 0.0f); |
| 229 running_mean_sq_[i] = complex<float>(0.0f, 0.0f); |
| 230 for (int j = 0; j < min(window_size_, history_cursor_); ++j) { |
| 231 AddToMean(subhistory_[i][j], j, &running_mean_[i]); |
| 232 AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]); |
| 233 } |
| 234 ++history_cursor_; |
| 235 } |
| 236 } |
| 237 ++count_; |
| 238 if (count_ == kWindowBlockSize) { |
| 239 count_ = 0; |
| 240 } |
| 241 } |
| 242 |
| 243 void VarianceArray::Clear() { |
| 244 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_); |
| 245 memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_); |
| 246 memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_); |
| 247 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_); |
| 248 history_cursor_ = 0; |
| 249 count_ = 0; |
| 250 array_mean_ = 0.0f; |
| 251 } |
| 252 |
| 253 void VarianceArray::ApplyScale(float scale) { |
| 254 array_mean_ = 0.0f; |
| 255 for (int i = 0; i < freqs_; ++i) { |
| 256 variance_[i] *= scale * scale; |
| 257 array_mean_ += (variance_[i] - array_mean_) / (i + 1); |
| 258 } |
| 259 } |
| 260 |
| 261 GainApplier::GainApplier(int freqs, float change_limit) |
| 262 : freqs_(freqs), |
| 263 change_limit_(change_limit), |
| 264 target_(new float[freqs]()), |
| 265 current_(new float[freqs]()) { |
| 266 for (int i = 0; i < freqs; ++i) { |
| 267 target_[i] = 1.0f; |
| 268 current_[i] = 1.0f; |
| 269 } |
| 270 } |
| 271 |
| 272 void GainApplier::Apply(const complex<float>* in_block, |
| 273 complex<float>* out_block) { |
| 274 for (int i = 0; i < freqs_; ++i) { |
| 275 float factor = sqrtf(fabsf(current_[i])); |
| 276 if (!std::isnormal(factor)) { |
| 277 factor = 1.0f; |
| 278 } |
| 279 out_block[i] = factor * in_block[i]; |
| 280 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_); |
| 281 } |
| 282 } |
| 283 |
| 284 } // namespace intelligibility |
| 285 |
| 286 } // namespace webrtc |
| 287 |
OLD | NEW |