Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(35)

Side by Side Diff: webrtc/modules/audio_processing/intelligibility/intelligibility_utils.cc

Issue 1177953006: Initial SIE commit: migrating existing code (Closed) Base URL: https://chromium.googlesource.com/external/webrtc.git@master
Patch Set: Created 5 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/audio_processing/intelligibility/intelligibility_utils. h"
12
13 #include <algorithm>
14 #include <cmath>
15 #include <cstring>
16
17 using std::complex;
18
19 namespace {
20
21 // Return |current| changed towards |target|, with the change being at most
22 // |limit|.
23 inline float UpdateFactor(float target, float current, float limit) {
24 float delta = fabsf(target - current);
25 float sign = copysign(1.0f, target - current);
26 return current + sign * fminf(delta, limit);
27 }
28
29 // std::isfinite for complex numbers.
30 inline bool cplxfinite(complex<float> c) {
31 return std::isfinite(c.real()) && std::isfinite(c.imag());
32 }
33
34 // std::isnormal for complex numbers.
35 inline bool cplxnormal(complex<float> c) {
36 return std::isnormal(c.real()) && std::isnormal(c.imag());
37 }
38
39 // Apply a small fudge to degenerate complex values. The numbers in the array
40 // were chosen randomly, so that even a series of all zeroes has some small
41 // variability.
42 inline complex<float> zerofudge(complex<float> c) {
43 const static complex<float> fudge[7] = {
44 {0.001f, 0.002f}, {0.008f, 0.001f}, {0.003f, 0.008f}, {0.0006f, 0.0009f},
45 {0.001f, 0.004f}, {0.003f, 0.004f}, {0.002f, 0.009f}
46 };
47 static int fudge_index = 0;
48 if (cplxfinite(c) && !cplxnormal(c)) {
49 fudge_index = (fudge_index + 1) % 7;
50 return c + fudge[fudge_index];
51 }
52 return c;
53 }
54
55 // Incremental mean computation. Return the mean of the series with the
56 // mean |mean| with added |data|.
57 inline complex<float> NewMean(complex<float> mean, complex<float> data,
58 int count) {
59 return mean + (data - mean) / static_cast<float>(count);
60 }
61
62 inline void AddToMean(complex<float> data, int count, complex<float>* mean) {
63 (*mean) = NewMean(*mean, data, count);
64 }
65
66 } // namespace
67
68 using std::min;
69
70 namespace webrtc {
71
72 namespace intelligibility {
73
74 static const int kWindowBlockSize = 10;
75
76 VarianceArray::VarianceArray(int freqs, StepType type, int window_size,
77 float decay)
78 : running_mean_(new complex<float>[freqs]()),
79 running_mean_sq_(new complex<float>[freqs]()),
80 sub_running_mean_(new complex<float>[freqs]()),
81 sub_running_mean_sq_(new complex<float>[freqs]()),
82 variance_(new float[freqs]()),
83 conj_sum_(new float[freqs]()),
84 freqs_(freqs),
85 window_size_(window_size),
86 decay_(decay),
87 history_cursor_(0),
88 count_(0),
89 array_mean_(0.0f) {
90 history_.reset(new scoped_ptr<complex<float>[]>[freqs_]());
91 for (int i = 0; i < freqs_; ++i) {
92 history_[i].reset(new complex<float>[window_size_]());
93 }
94 subhistory_.reset(new scoped_ptr<complex<float>[]>[freqs_]());
95 for (int i = 0; i < freqs_; ++i) {
96 subhistory_[i].reset(new complex<float>[window_size_]());
97 }
98 subhistory_sq_.reset(new scoped_ptr<complex<float>[]>[freqs_]());
99 for (int i = 0; i < freqs_; ++i) {
100 subhistory_sq_[i].reset(new complex<float>[window_size_]());
101 }
102 switch (type) {
103 case kStepInfinite:
104 step_func_ = &VarianceArray::InfiniteStep;
105 break;
106 case kStepDecaying:
107 step_func_ = &VarianceArray::DecayStep;
108 break;
109 case kStepWindowed:
110 step_func_ = &VarianceArray::WindowedStep;
111 break;
112 case kStepBlocked:
113 step_func_ = &VarianceArray::BlockedStep;
114 break;
115 }
116 }
117
118 // Compute the variance with Welford's algorithm, adding some fudge to
119 // the input in case of all-zeroes.
120 void VarianceArray::InfiniteStep(const complex<float>* data, bool skip_fudge) {
121 array_mean_ = 0.0f;
122 ++count_;
123 for (int i = 0; i < freqs_; ++i) {
124 complex<float> sample = data[i];
125 if (!skip_fudge) {
126 sample = zerofudge(sample);
127 }
128 if (count_ == 1) {
129 running_mean_[i] = sample;
130 variance_[i] = 0.0f;
131 } else {
132 float old_sum = conj_sum_[i];
133 complex<float> old_mean = running_mean_[i];
134 running_mean_[i] = old_mean + (sample - old_mean) /
135 static_cast<float>(count_);
136 conj_sum_[i] = (old_sum + std::conj(sample - old_mean) *
137 (sample - running_mean_[i])).real();
138 variance_[i] = conj_sum_[i] / (count_ - 1); // + fudge[fudge_index].real() ;
139 if (skip_fudge && false) {
140 //variance_[i] -= fudge[fudge_index].real();
141 }
142 }
143 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
144 }
145 }
146
147 // Compute the variance from the beginning, with exponential decaying of the
148 // series data.
149 void VarianceArray::DecayStep(const complex<float>* data, bool /*dummy*/) {
150 array_mean_ = 0.0f;
151 ++count_;
152 for (int i = 0; i < freqs_; ++i) {
153 complex<float> sample = data[i];
154 sample = zerofudge(sample);
155
156 if (count_ == 1) {
157 running_mean_[i] = sample;
158 running_mean_sq_[i] = sample * std::conj(sample);
159 variance_[i] = 0.0f;
160 } else {
161 complex<float> prev = running_mean_[i];
162 complex<float> prev2 = running_mean_sq_[i];
163 running_mean_[i] = decay_ * prev + (1.0f - decay_) * sample;
164 running_mean_sq_[i] = decay_ * prev2 +
165 (1.0f - decay_) * sample * std::conj(sample);
166 //variance_[i] = decay_ * variance_[i] + (1.0f - decay_) * (
167 // (sample - running_mean_[i]) * std::conj(sample - running_mean_[i])).re al();
168 variance_[i] = (running_mean_sq_[i] - running_mean_[i] * std::conj(running _mean_[i])).real();
169 }
170
171 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
172 }
173 }
174
175 // Windowed variance computation. On each step, the variances for the
176 // window are recomputed from scratch, using Welford's algorithm.
177 void VarianceArray::WindowedStep(const complex<float>* data, bool /*dummy*/) {
178 int num = min(count_ + 1, window_size_);
179 array_mean_ = 0.0f;
180 for (int i = 0; i < freqs_; ++i) {
181 complex<float> mean;
182 float conj_sum = 0.0f;
183
184 history_[i][history_cursor_] = data[i];
185
186 mean = history_[i][history_cursor_];
187 variance_[i] = 0.0f;
188 for (int j = 1; j < num; ++j) {
189 complex<float> sample = zerofudge(
190 history_[i][(history_cursor_ + j) % window_size_]);
191 sample = history_[i][(history_cursor_ + j) % window_size_];
192 float old_sum = conj_sum;
193 complex<float> old_mean = mean;
194
195 mean = old_mean + (sample - old_mean) / static_cast<float>(j + 1);
196 conj_sum = (old_sum + std::conj(sample - old_mean) *
197 (sample - mean)).real();
198 variance_[i] = conj_sum / (j);
199 }
200 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
201 }
202 history_cursor_ = (history_cursor_ + 1) % window_size_;
203 ++count_;
204 }
205
206 // Variance with a window of blocks. Within each block, the variances are
207 // recomputed from scratch at every stp, using |Var(X) = E(X^2) - E^2(X)|.
208 // Once a block is filled with kWindowBlockSize samples, it is added to the
209 // history window and a new block is started. The variances for the window
210 // are recomputed from scratch at each of these transitions.
211 void VarianceArray::BlockedStep(const complex<float>* data, bool /*dummy*/) {
212 int blocks = min(window_size_, history_cursor_);
213 for (int i = 0; i < freqs_; ++i) {
214 AddToMean(data[i], count_ + 1, &sub_running_mean_[i]);
215 AddToMean(data[i] * std::conj(data[i]), count_ + 1,
216 &sub_running_mean_sq_[i]);
217 subhistory_[i][history_cursor_ % window_size_] = sub_running_mean_[i];
218 subhistory_sq_[i][history_cursor_ % window_size_] = sub_running_mean_sq_[i];
219
220 variance_[i] = (NewMean(running_mean_sq_[i], sub_running_mean_sq_[i],
221 blocks) -
222 NewMean(running_mean_[i], sub_running_mean_[i], blocks) *
223 std::conj(NewMean(running_mean_[i], sub_running_mean_[i],
224 blocks))).real();
225 if (count_ == kWindowBlockSize - 1) {
226 sub_running_mean_[i] = complex<float>(0.0f, 0.0f);
227 sub_running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
228 running_mean_[i] = complex<float>(0.0f, 0.0f);
229 running_mean_sq_[i] = complex<float>(0.0f, 0.0f);
230 for (int j = 0; j < min(window_size_, history_cursor_); ++j) {
231 AddToMean(subhistory_[i][j], j, &running_mean_[i]);
232 AddToMean(subhistory_sq_[i][j], j, &running_mean_sq_[i]);
233 }
234 ++history_cursor_;
235 }
236 }
237 ++count_;
238 if (count_ == kWindowBlockSize) {
239 count_ = 0;
240 }
241 }
242
243 void VarianceArray::Clear() {
244 memset(running_mean_.get(), 0, sizeof(*running_mean_.get()) * freqs_);
245 memset(running_mean_sq_.get(), 0, sizeof(*running_mean_sq_.get()) * freqs_);
246 memset(variance_.get(), 0, sizeof(*variance_.get()) * freqs_);
247 memset(conj_sum_.get(), 0, sizeof(*conj_sum_.get()) * freqs_);
248 history_cursor_ = 0;
249 count_ = 0;
250 array_mean_ = 0.0f;
251 }
252
253 void VarianceArray::ApplyScale(float scale) {
254 array_mean_ = 0.0f;
255 for (int i = 0; i < freqs_; ++i) {
256 variance_[i] *= scale * scale;
257 array_mean_ += (variance_[i] - array_mean_) / (i + 1);
258 }
259 }
260
261 GainApplier::GainApplier(int freqs, float change_limit)
262 : freqs_(freqs),
263 change_limit_(change_limit),
264 target_(new float[freqs]()),
265 current_(new float[freqs]()) {
266 for (int i = 0; i < freqs; ++i) {
267 target_[i] = 1.0f;
268 current_[i] = 1.0f;
269 }
270 }
271
272 void GainApplier::Apply(const complex<float>* in_block,
273 complex<float>* out_block) {
274 for (int i = 0; i < freqs_; ++i) {
275 float factor = sqrtf(fabsf(current_[i]));
276 if (!std::isnormal(factor)) {
277 factor = 1.0f;
278 }
279 out_block[i] = factor * in_block[i];
280 current_[i] = UpdateFactor(target_[i], current_[i], change_limit_);
281 }
282 }
283
284 } // namespace intelligibility
285
286 } // namespace webrtc
287
OLDNEW
« no previous file with comments | « webrtc/modules/audio_processing/intelligibility/intelligibility_utils.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698